Extensions 1→N→G→Q→1 with N=C4 and Q=C23×C6

Direct product G=N×Q with N=C4 and Q=C23×C6
dρLabelID
C24×C12192C2^4xC12192,1530

Semidirect products G=N:Q with N=C4 and Q=C23×C6
extensionφ:Q→Aut NdρLabelID
C4⋊(C23×C6) = D4×C22×C6φ: C23×C6/C22×C6C2 ⊆ Aut C496C4:(C2^3xC6)192,1531

Non-split extensions G=N.Q with N=C4 and Q=C23×C6
extensionφ:Q→Aut NdρLabelID
C4.1(C23×C6) = C2×C6×D8φ: C23×C6/C22×C6C2 ⊆ Aut C496C4.1(C2^3xC6)192,1458
C4.2(C23×C6) = C2×C6×SD16φ: C23×C6/C22×C6C2 ⊆ Aut C496C4.2(C2^3xC6)192,1459
C4.3(C23×C6) = C2×C6×Q16φ: C23×C6/C22×C6C2 ⊆ Aut C4192C4.3(C2^3xC6)192,1460
C4.4(C23×C6) = C6×C4○D8φ: C23×C6/C22×C6C2 ⊆ Aut C496C4.4(C2^3xC6)192,1461
C4.5(C23×C6) = C6×C8⋊C22φ: C23×C6/C22×C6C2 ⊆ Aut C448C4.5(C2^3xC6)192,1462
C4.6(C23×C6) = C6×C8.C22φ: C23×C6/C22×C6C2 ⊆ Aut C496C4.6(C2^3xC6)192,1463
C4.7(C23×C6) = C3×D8⋊C22φ: C23×C6/C22×C6C2 ⊆ Aut C4484C4.7(C2^3xC6)192,1464
C4.8(C23×C6) = C3×D4○D8φ: C23×C6/C22×C6C2 ⊆ Aut C4484C4.8(C2^3xC6)192,1465
C4.9(C23×C6) = C3×D4○SD16φ: C23×C6/C22×C6C2 ⊆ Aut C4484C4.9(C2^3xC6)192,1466
C4.10(C23×C6) = C3×Q8○D8φ: C23×C6/C22×C6C2 ⊆ Aut C4964C4.10(C2^3xC6)192,1467
C4.11(C23×C6) = Q8×C22×C6φ: C23×C6/C22×C6C2 ⊆ Aut C4192C4.11(C2^3xC6)192,1532
C4.12(C23×C6) = C2×C6×C4○D4φ: C23×C6/C22×C6C2 ⊆ Aut C496C4.12(C2^3xC6)192,1533
C4.13(C23×C6) = C6×2+ 1+4φ: C23×C6/C22×C6C2 ⊆ Aut C448C4.13(C2^3xC6)192,1534
C4.14(C23×C6) = C6×2- 1+4φ: C23×C6/C22×C6C2 ⊆ Aut C496C4.14(C2^3xC6)192,1535
C4.15(C23×C6) = C3×C2.C25φ: C23×C6/C22×C6C2 ⊆ Aut C4484C4.15(C2^3xC6)192,1536
C4.16(C23×C6) = C2×C6×M4(2)central extension (φ=1)96C4.16(C2^3xC6)192,1455
C4.17(C23×C6) = C6×C8○D4central extension (φ=1)96C4.17(C2^3xC6)192,1456
C4.18(C23×C6) = C3×Q8○M4(2)central extension (φ=1)484C4.18(C2^3xC6)192,1457

׿
×
𝔽